Exercise 25

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

$$
y \sin 2 x=x \cos 2 y, \quad(\pi / 2, \pi / 4)
$$

Solution

The aim is to evaluate y^{\prime} at $x=\pi / 2$ and $y=\pi / 4$ in order to find the slope there. Differentiate both sides of the given equation with respect to x.

$$
\begin{aligned}
\frac{d}{d x}(y \sin 2 x) & =\frac{d}{d x}(x \cos 2 y) \\
{\left[\frac{d}{d x}(y)\right] \sin 2 x+y\left[\frac{d}{d x}(\sin 2 x)\right] } & =\left[\frac{d}{d x}(x)\right] \cos 2 y+x\left[\frac{d}{d x}(\cos 2 y)\right] \\
\left(y^{\prime}\right) \sin 2 x+y\left[(\cos 2 x) \cdot \frac{d}{d x}(2 x)\right] & =(1) \cos 2 y+x\left[(-\sin 2 y) \cdot \frac{d}{d x}(2 y)\right] \\
y^{\prime} \sin 2 x+y[(\cos 2 x) \cdot(2)] & =\cos 2 y+x\left[(-\sin 2 y) \cdot\left(2 y^{\prime}\right)\right] \\
y^{\prime} \sin 2 x+2 y \cos 2 x & =\cos 2 y-2 x y^{\prime} \sin 2 y
\end{aligned}
$$

Solve for y^{\prime}.

$$
\begin{gathered}
(\sin 2 x+2 x \sin 2 y) y^{\prime}=\cos 2 y-2 y \cos 2 x \\
y^{\prime}=\frac{\cos 2 y-2 y \cos 2 x}{\sin 2 x+2 x \sin 2 y}
\end{gathered}
$$

Evaluate y^{\prime} at $x=\pi / 2$ and $y=\pi / 4$.

$$
y^{\prime}\left(\frac{\pi}{2}, \frac{\pi}{4}\right)=\frac{\cos \left[2\left(\frac{\pi}{4}\right)\right]-2\left(\frac{\pi}{4}\right) \cos \left[2\left(\frac{\pi}{2}\right)\right]}{\sin \left[2\left(\frac{\pi}{2}\right)\right]+2\left(\frac{\pi}{2}\right) \sin \left[2\left(\frac{\pi}{4}\right)\right]}=\frac{1}{2}
$$

Therefore, the equation of the tangent line to the curve represented by $y \sin 2 x=x \cos 2 y$ at $(\pi / 2, \pi / 4)$ is

$$
y-\frac{\pi}{4}=\frac{1}{2}\left(x-\frac{\pi}{2}\right),
$$

or

$$
y=\frac{x}{2} .
$$

Below is a graph of the curve and the tangent line at $(\pi / 2, \pi / 4)$.

